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Currently
Associate Professor at the Université de Nantes teaching software engineering (including MDE and
SLE) at the Department of Computer Science
Member of the NaoMod research group in the LS2N lab, which works on a wide range of MDE
topics:

model transformation languages (ATL, CoqTL)
e�cient model storage (NeoEMF)
runtime models management
scalable model views (EMF Views)
software language engineering, model execution (GEMOC Studio)

Before
2012–2015: PhD at the University of Rennes (France)
2016–2018: Post-doc at TU Wien (Austria)

What I do
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Background: models, executable DSLs and tools



Cyber physical systems, internet of things, massively multiplayer online games, arti�cial intelligence, …
complexity everywhere!
involving multiple stakeholders and concerns from diverse and heterogeneous domains

Increasing use of software, aka. software−intensive systems

Increasing complexity of systems
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   MDE in a nutshell
Envisionned system

Design
model

Resulting system

... and many 
other models

prescriptive
modeling

Separation of concerns through the use of models
de�ned using domain speci�c languages (DSLs)
each representing a particular aspect of a system

1

Composition of all often heterogeneous models2

Implementation (or generation) of the �nal resulting system3

Model-Driven Engineering (MDE)
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De�nition
Well scoped language, often small
Targets particular tasks in a certain domain
Relies on dedicated notations (textual or graphical)

Promises
Less redundancy
Better separation of concerns
Accessible for domain experts

∇-Nabla
(Numerical-analysis)

HTML
(Web development)

CATIA
(Computed-aided
manufacturing)

POV-Ray
(Computer graphics)

Domain-Speci�c Languages (DSLs)
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Anatomy and tooling of a DSL
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Tracer

Runtime 
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runner

Dynamic
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Example of (executable) DSL
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Example of (executable) DSL
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Generic tooling: why and how



Let's start over…
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And now a step back…
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Model-Based Safety Analysis (MBSA)
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Developing all aspects of a system requires multiple DSLs…
Each DSL requires multiple tools (editor, debugger, static analyzer)…
System development implies multiple contiguous activities, each with its own models, DSLs and
tools

Implications
Cost: huge amount of tools to develop and maintain1

Usability: tools must be specialized to activities and DSLs2

Interoperability: a single tool must cooperate with:
Other tools supporting the same DSL
Other tools supporting the same activity
Other tools supporting contiguous activities

3

The tool explosion problem
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System development implies multiple contiguous activities, each with its own models, DSLs and
tools

Implications

Let's focus on reducing cost!

Cost: huge amount of tools to develop and maintain1

Usability: tools must be specialized to activities and DSLs2

Interoperability: a single tool must cooperate with:
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Idea
Instead of restricting a tool to a given DSL, can we make tools
compatible with a wide range of DSL?
In other words: can we make truly generic tools?

Generic tool

DSL 1 DSL 1 DSL 1

Generic tools to the rescue
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In other words: can we make truly generic tools?

Problem
But a generic tool was not coded with domain knowledge, how can it provide relevant services?

a state machine editor knows that it can draw states and transitions
… what does a generic editor know?
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Idea
Instead of restricting a tool to a given DSL, can we make tools
compatible with a wide range of DSL?
In other words: can we make truly generic tools?

Solution
A generic tool can learn domain knowledge on the �y, ie. a generic
tool can "open" the DSL de�nition and understand its content!

Problem
But a generic tool was not coded with domain knowledge, how can it provide relevant services?

a state machine editor knows that it can draw states and transitions
… what does a generic editor know?

Generic tool

DSL 1 DSL 1 DSL 1

Generic tool

What are the
concepts?

How is the
semantics
structured?

Generic tools to the rescue
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Prerequisite: the DSL de�nition must be analysable (ie. whitebox)

Two main categories of generic tools:
tool generators, which interpret the DSL de�nition to generate a DSL-speci�c tool
regular tools, which interpret the DSL de�nition at load-time or at design-time to provide services

De�ne the services of the tool in a language-agnostic fashion1

Scope which families of DSLs can be targeted by the tool (eg. "only metamodel-based DSLs")
this is mandatory for the tool to be able to discover the DSL content automatically

2

Enrich the DSL de�nition with necessary non-explicit information3

Basic recipe to create a generic tool
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Very popular framework that can be used to:

de�ne the textual concrete syntax of DSLs,1

generate a full-�edged textual editor from the DSL de�nition.2

A well-known generic tool: Xtext
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   Characteristics
Generic tool generator: the DSL de�nition is
read only once to produce a DSL-speci�c tool
Scope: DSLs de�ned using Ecore and Xtext
Required enrichment of the DSL: formatting and
coloring rules, quick�x system, builder, etc.

Very popular framework that can be used to:

de�ne the textual concrete syntax of DSLs,1

generate a full-�edged textual editor from the DSL de�nition.2

DSL

Concrete syntax 
(.xtext) 

Abstract syntax
(.ecore) 

specific to

Textual editor

Autocompletion

Syntax highlighter

Formatter

…

Text editor
generator

Formatting and
coloring rules,
quickfixes, etc.

(.java) 

A well-known generic tool: Xtext
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Generic tool generator: the DSL de�nition is
read only once to produce a DSL-speci�c tool
Scope: DSLs de�ned using Ecore and Xtext
Required enrichment of the DSL: formatting and
coloring rules, quick�x system, builder, etc.

Very popular framework that can be used to:

Focus of next parts: dynamic generic tools used at execution time

de�ne the textual concrete syntax of DSLs,1

generate a full-�edged textual editor from the DSL de�nition.2
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Case 1: Generic trace management
Erwan Bousse, Tanja Mayerhofer, Benoit Combemale, Benoit Baudry. Advanced and e�cient execution

trace management for executable domain-speci�c modeling languages. SoSym 2017.



Example of a Petri net execution trace:

Problem
A wide range of dynamic veri�cation and validation approaches relies on execution traces (runtime
monitoring, semantic di�erencing, model checking, …)
How can we represent executions in order to analyze them?

p1 t1 p3 t2 p4

p2 p2

p1 t1 p3 t2 p4 p1 t1 p3 t2 p4

p2

fire(t1) fire(t2)

run()

Execution traces
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   Compact Trace Format (CTF) [Hamou-Lhadj2012]

Trace format designed for object-oriented
programming languages
Aimed towards lossless compression of traces
Concepts such as class, routine, package, …
Cannot be used to trace other kinds of
languages (eg. Petri nets)

Example of domain-speci�c tracing
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Trace format designed for object-oriented
programming languages
Aimed towards lossless compression of traces
Concepts such as class, routine, package, …
Cannot be used to trace other kinds of
languages (eg. Petri nets)

  
We must re-think tracing in
a language-agnostic fashion

Example of domain-speci�c tracing
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Tracing in a speci�c context relies on speci�c concepts:
A Java trace is composed of method calls and heaps snapshots
An activity diagram trace is a sequence of activated nodes

Towards generic execution trace management
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An execution state stores the values of the dynamic parts of the model (e.g. tokens)
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Tracing in a speci�c context relies on speci�c concepts:
A Java trace is composed of method calls and heaps snapshots
An activity diagram trace is a sequence of activated nodes

Tracing for any DSL (ie. any context) requires generic concepts, such as:
An execution state stores the values of the dynamic parts of the model (e.g. tokens)
An execution step is the application of a execution rule of the semantics (eg. �re)

Consequently: we need more information in the DSL de�nition
what are the dynamic parts (ie. the execution state de�nition)?
what are the possible execution steps?

Towards generic execution trace management
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Enrichment
Abstract Syntax

input
1..*
output
1..*

Net

Place
name: string
initialTokens: int

Transition
name: string

transitions
*

places
*

imports

merges

Execution Metamodel

Place
tokens: int

Execution transformation rules (summarized)

: while there is an enabled transition, fires it. 
: returns true if tokens > 0 for each input Place, false otherwise. 
: removes a token from each input Place and adds one to each output Place. 
: adds a token to a Place 
: removes a token from a Place

run(Net) 
isEnabled(Transition) 
fire(Transition) 
addToken(Place) 
removeToken(Place)

: while there is an enabled transition, fires it. 
: returns true if tokens > 0 for each input Place, false otherwise. 
: removes a token from each input Place and adds one to each output Place. 
: adds a token to a Place 
: removes a token from a Place

1 − Enrichment of the DSL with steps and states
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input
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output
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Net

Place
name: string
initialTokens: int

Transition
name: string

transitions
*

places
*

imports

merges

Execution Metamodel

Place
tokens: int

Execution transformation rules (summarized)

: while there is an enabled transition, fires it. 
: returns true if tokens > 0 for each input Place, false otherwise. 
: removes a token from each input Place and adds one to each output Place. 
: adds a token to a Place 
: removes a token from a Place

run(Net) 
isEnabled(Transition) 
fire(Transition) 
addToken(Place) 
removeToken(Place)

: while there is an enabled transition, fires it. 
: returns true if tokens > 0 for each input Place, false otherwise. 
: removes a token from each input Place and adds one to each output Place. 
: adds a token to a Place 
: removes a token from a Place

@Step 

@Step

1 − Enrichment of the DSL with steps and states
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p1 t1 p3 t2 p4

p2 p2

p1 t1 p3 t2 p4 p1 t1 p3 t2 p4

p2

fire(t1) fire(t2)

run()

Tracer

observe

execution
traces

DSL

Syntax

Semantics

Tracing Tool

Generator

specific to

conforms to

Execution of a model

Trace

metamodel

Trace

constructor

2 − Generic generation of a DSL-speci�c tracer
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Trace metamodel generation – Steps concepts
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Trace metamodel generation – States concepts
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Petri net abstract syntax

Place
+name: String
+initialTokens: int

input
1..*

output
1..*

Transition
+name: String

Net

places
*

transitions
*

StepsStates

TokensValue
+tokens: int

originalObject
1

TracedPlace

parent
1

{ordered=true} 
tokensSequence 
0..*

ExecutionState

+()
+()
+()
+()
+()

states 
1..*

tokensValues 
0..*

{ordered=true} 
startedSteps 
0..*

<<abstract>>

SmallStep
<<abstract>>

BigStep

startingState 
1

<<abstract>>

Step

+()
+()
+()
+()

{ordered=true} 
endedSteps 
0..*

endingState 
0..1

{ordered=true} 
/subSteps 
0..*

/parentStep 
0..1

caller
1

FireStep

caller
1

{ordered=true} 
subSteps 
0..*

runParentStep 
0..1

<<abstract>>

RunSubStep RunStep

tracedPlaces
*

{ordered=true} 
fireSequence 
*

{ordered=true} 
executionStates 
0..*

{ordered=true} 
runSequence 
*

{ordered=true} 
rootSteps 
0..*

Trace

Trace metamodel generation – States conceptsResulting Petri nets trace metamodel
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Trace metamodel generation – States conceptsResulting Petri nets trace constructor (excerpt)
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: Trace

s1 : ExecutionState s2 : ExecutionState

p1 : TracedPlace

p2 : TracedPlace

p3 : TracedPlace

p4 : TracedPlace

: TokensValue

tokens = 1

: TokensValue

tokens = 0

: TokensValue

tokens = 0

: TokensValue

tokens = 1

: TokensValue

tokens = 0

: TokensValue

tokens = 1

: TokensValue

tokens = 0

tokens
Trace

tokens
Trace

tokens
Trace

executionState

tokensValues

executionState

tokensValues

executionState

tokensValues

tokens
Trace

exeTrace

tracedPlaces

: Place

- name = "p3"
- initialTokens = 0

: Place

- name = "p4"
- initialTokens = 0

: Place

- name = "p2"
- initialTokens = 1

: Place

- name = "p1"
- initialTokens = 1

originalObject

originalObject

originalObject

originalObject

: TokensValue

tokens = 0

: TokensValue

tokens = 1

s0 : ExecutionState

t1p1 p3

p2

p4t2 t1p1 p3

p2

p4t2 t1p1 p3

p2

p4t2fire(t1) fire(t2)

value

object state

model state

model element

Trace metamodel generation – States conceptsExample of Petri net trace (states only)
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Case 2: Generic omniscient debugging
Erwan Bousse, Dorian Leroy, Benoit Combemale, Manuel Wimmer, Benoit Baudry. Omniscient

debugging for executable DSLs. Journal of Systems and Software, 2018.



Problem
Interactive debugging is a very common and required service to better understand models through
interactive execution and observation facilities
Omniscient debugging extends interactive debugging with facilities to re-explore former execution
states during a live execution
How can we provide omniscient debugging services for any kind of DSL?

p1 t1 p3 t2 p4

p2 p2

p1 t1 p3 t2 p4 p1 t1 p3 t2 p4

p2

fire(t1) fire(t2)

Domain 
expert

observe 
tokens?

pause 
when p4 
has tokens?

fire transitions 
one by one?

go back 
in time?

Trace metamodel generation – States conceptsOmniscient debugging
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   Eclipse JDT Java Debugger
Debuggers are mostly known for
debugging imperative programs
Concepts such as stack of method calls,
current statement, "this" variable, …
Cannot be used to debug other kinds
of languages (eg. Petri nets)

Method 
calls

Variable "this" 

Current 
statement

Trace metamodel generation – States conceptsExample of interactive debugging for a speci�c language

26 / 41



   Eclipse JDT Java Debugger
Debuggers are mostly known for
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current statement, "this" variable, …
Cannot be used to debug other kinds
of languages (eg. Petri nets)

     
  

We must re-think
interactive debugging in

a language-agnostic fashion

Method 
calls

Variable "this" 

Current 
statement
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In software engineering, interactive debugging relies on well-known concepts:
a breakpoint is a marker that is put on a speci�c line of code, (or on a method, or an exception),
and that will pause the execution once reached
the “step into” operation means going to the �rst statement of the next method call,
backwards operators (eg. “back into” or "play reverse") provide the same services in reverse
…

Trace metamodel generation – States conceptsTowards generic omniscient debugging
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p1 t1 p3 t2 p4

p2 p2

p1 t1 p3 t2 p4 p1 t1 p3 t2 p4

p2

fire(t1) fire(t2)

run()

Omniscient

debugger

observe,
control

debugging
services

DSL

Syntax

Semantics

conforms to

Execution of a model

configured
by

Trace metamodel generation – States conceptsDe�nition of a generic debugger con�gured with the DSL de�nition
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Debugging Generic Trace

<<abstract>>

StepStepping

{ordered=true} 
inProgress 
*

exeState
1

<<enum>>

StepNotificationKind
STARTING
ENDING

stepping 
1

DebuggingState
lastNotification: StepNotificationKind

<<abstract>>

Breakpoint
stepping: boolean

<<abstract>>

ModelState

ExecutionState

modelState 
1

starting 
0..1

ending 
0..1

breakpoints 
*

Trace metamodel generation – States conceptsGeneric omniscient debugging metamodel
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Trace metamodel generation – States conceptsGeneric de�nition of debugging services (excerpt)
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[1] stepInto

31 2

[3] backOver

[4] stepOver

p4

p5

t1

t2

t3

p1

p3

p2

p4

p5

t1

t2

t3

fire(t1)

A B

1 2 3

p3

p1

p2

run(net)

[0] break 
point [2] stepOver

Trace metamodel generation – States conceptsExample of Petri net generic omniscient debugging
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Connecting generic tools to DSLs at runtime
Erwan Bousse, Thomas Degueule, Didier Vojtisek, Tanja Mayerhofer, Julien Deantoni, Benoit

Combemale. Execution Framework of the GEMOC Studio (Tool Demo). International Conference on
Software Language Engineering (SLE), 2016.



Problem: once de�ned or generated, how can a generic tool interact with an executed model?

Trace metamodel generation – States conceptsUsing an execution engine as an intermediary (1)
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Problem: once de�ned or generated, how can a generic tool interact with an executed model?
To mitigate the intrusiveness of tools, connection of the semantics with a unique execution engine,
often through some instrumentation of the interpreter

Monitor
Tracer

observes

Debugger

manages

p1 t1 p3 t2 p4

p2 p2

p1 t1 p3 t2 p4 p1 t1 p3 t2 p4

p2

fire(t1) fire(t2)

run()

DSL

Syntax

Semantics

conforms to

Execution of a model

Execution engine

notifies notifies
notifies

Trace metamodel generation – States conceptsUsing an execution engine as an intermediary (1)
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Trace metamodel generation – States conceptsUsing an execution engine as an intermediary (2)
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Implementation in the GEMOC Studio



Open-source Eclipse-based workbench
atop the Eclipse Modeling Framework
(EMF), in two parts:

language workbench: used by
language designers to build and
compose new executable DSLs,
modeling workbench: used by
domain designers to create,
execute and coordinate models
conforming to executable DSLs.

Handled by the GEMOC initiative, an
informal group with partners from both
the academia and the industry
Now an o�cial research consortium of
the Eclipse foundation

 

GEMOC Studio
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Generic dynamic tools in the GEMOC Studio
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Conclusion and Looking forward



Mitigating the tool explosion problem with generic tooling
DSLs are central assets when using MDE to design all aspects of complex systems
However, tool explosion problem:

a system requires a wide range of DSLs,
a DSL requires a wide range of tools,
thus huge cost development e�ort.

Presented mitigation: generic tooling
must be well-scoped and language-agnostic
often require enriching the DSL de�nition
two examples shown: tracing and omniscient debugging

Conclusion

36 / 41



Mitigating the tool explosion problem with generic tooling
DSLs are central assets when using MDE to design all aspects of complex systems
However, tool explosion problem:

a system requires a wide range of DSLs,
a DSL requires a wide range of tools,
thus huge cost development e�ort.

Presented mitigation: generic tooling
must be well-scoped and language-agnostic
often require enriching the DSL de�nition
two examples shown: tracing and omniscient debugging

But no silver bullet!
While saving costs, generic tools cannot compete with handmade �nely tuned domain-speci�c tools
Extremely useful for new DSLs that have no or little tool-support
Possible strategy: progressively replace generic tools with handmade domain-speci�c ones

Conclusion

36 / 41



  

Looking forward
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   Generic tools rarely meet the standards of domain-
speci�c tools, as they cannot cover all peculiarities of the
domain or needs of domain experts
Idea: facilitate the specialization of a generic tool for a
given DSL, which requires:

enriching the DSL with well chosen extraneous data
required for the specialization,
customizing the generic tools by choosing speci�c
features that may or may not be required for the
DSL.

Questions:

Is is required to adapt the syntax or semantics of a DSL to a tool? (eg. @Step annotation)
How to progressively specialize a tool, the more enrichment data is provided?

Looking forward (1): better tool specialization
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   Huge amount of diversity, not only among DSLs
(di�erent paradigms, domains, purposes), but also
among DSL engineering itself:

kinds of abstract syntaxes (metamodel, ADT, etc.)
kinds of semantics (operational, translational,
rewriting rules, etc.)
kinds of concrete syntaxes (graphical, textual, etc.)
used patterns (visitor based interpreted, etc.)
used metalanguages (Ecore, Monticore, Kermeta,
Rascal, ATL, Spoofax, Coq etc.)

Questions:

How to make tools that can be reused over a wide scope of DSLs and metalanguages?
At runtime, how to deal with all sorts of semantics?
Are protocols the future, similarly to the Language Server Protocol (LSP)?

Looking forward (2): mastering DSL diversity
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   Wide range of approaches aiming to compose DSLs
and/or reuse parts of DSLs
What about tools? Maybe they should be composed too!
Questions:

Can the composition of tools be derived from the
composition of DSLs?
Should a composite tool be a "common
denominator", or can it bene�t from the speci�cities
of each tool?

Looking forward (3): tool composition
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Thank you for your attention!
https://bousse-e.univ-nantes.io
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