
Domain-Level Observation and Control for Compiled
Executable DSLs

MODELS 2019 Foundations Track − Münich, Germany

Erwan Bousse
University of Nantes – LS2N, France

 Manuel Wimmer
CDL-MINT, Johannes Kepler University Linz, Austria

1/67



Behavioral models (eg. state machines) can
conveniently describe the behaviors of
systems under design.
Domain-speci�c languages (DSLs) can be
engineered and used to build such models.
Dynamic analyses of behavioral models are
crucial in early design phases to see how a
described behavior unfolds over time.

Require the possibility to execute models ⚙ !

Behavioral 
model

Dynamic Analysis of Behavioral Models

2/67



Behavioral models (eg. state machines) can
conveniently describe the behaviors of
systems under design.
Domain-speci�c languages (DSLs) can be
engineered and used to build such models.
Dynamic analyses of behavioral models are
crucial in early design phases to see how a
described behavior unfolds over time.

Require the possibility to execute models ⚙ !

Behavioral 
model

conforms 
to

DSL

Dynamic Analysis of Behavioral Models

3/67



Behavioral models (eg. state machines) can
conveniently describe the behaviors of
systems under design.
Domain-speci�c languages (DSLs) can be
engineered and used to build such models.
Dynamic analyses of behavioral models are
crucial in early design phases to see how a
described behavior unfolds over time.

Require the possibility to execute models ⚙ !

Behavioral 
model

conforms 
to

DSL

Dynamic
Analysis

Dynamic Analysis of Behavioral Models

4/67



Behavioral models (eg. state machines) can
conveniently describe the behaviors of
systems under design.
Domain-speci�c languages (DSLs) can be
engineered and used to build such models.
Dynamic analyses of behavioral models are
crucial in early design phases to see how a
described behavior unfolds over time.

Require the possibility to execute models ⚙ !

Behavioral 
model

conforms 
to

DSL

Dynamic
Analysis

Model 
Execution

Dynamic Analysis of Behavioral Models

5/67



Model

Procedure

dependency

conforms to

input/output

Model execution with an interpreted DSL

6/67



Model

Procedure

dependency

conforms to

input/output

Interpreted DSL

Model execution with an interpreted DSL

7/67



Model

Procedure

dependency

conforms to

input/output

Interpreted DSL

Abstract
Syntax 

(metamodel)

Model execution with an interpreted DSL

8/67



Model

Procedure

dependency

conforms to

input/output

Interpreted DSL

Abstract
Syntax 

(metamodel)

Model State 
Definition

Model execution with an interpreted DSL

9/67



Model

Procedure

dependency

conforms to

input/output

Interpreted DSL

Abstract
Syntax 

(metamodel)

Model State 
Definition

Execution Steps 
Definition

Interpretation 
Rules 

Model execution with an interpreted DSL

10/67



Model

Procedure

dependency

conforms to

input/output

Interpreted DSL

Abstract
Syntax 

(metamodel)

Model State 
Definition

Execution Steps 
Definition

Interpretation 
Rules 

Ta
rg

et
 in

te
rp

re
te

r

Engine

Model execution with an interpreted DSL

11/67



Model

Procedure

dependency

conforms to

input/output

Interpreted DSL

Abstract
Syntax 

(metamodel)

Model State 
Definition

Execution Steps 
Definition

Interpretation 
Rules 

Ta
rg

et
 in

te
rp

re
te

r

Engine

Executed 
Model

Model execution with an interpreted DSL

12/67



Model

Procedure

dependency

conforms to

input/output

Interpreted DSL

Abstract
Syntax 

(metamodel)

Model State 
Definition

Execution Steps 
Definition

Interpretation 
Rules 

Ta
rg

et
 in

te
rp

re
te

r

Engine

Executed 
Model

State

Steps
 

runtime 
data

Model execution with an interpreted DSL

13/67



Model

Procedure

dependency

conforms to

input/output

Interpreted DSL

Abstract
Syntax 

(metamodel)

Model State 
Definition

Execution Steps 
Definition

Interpretation 
Rules 

Ta
rg

et
 in

te
rp

re
te

r

Engine

Executed 
Model

State

Steps
 

runtime 
data

Dynamic analysis
services 

Tracer

Debugger

...

Model execution with an interpreted DSL

14/67



Abstract Syntax

input
1..*
output
1..*

Net

Place
name: String
initialTokens: Integer

Transition
name: String

places
* importsmerges

Model State Definition

Place
tokens: Integer

Interpretation rules (summarized)

run(Net) 
fire(Transition)

: while there is an enabled transition, fires it. 
: removes a token from each input Place 
and adds one to each output Place.

* 
transitions

Example of an Interpreted DSL

15/67



Abstract Syntax

input
1..*
output
1..*

Net

Place
name: String
initialTokens: Integer

Transition
name: String

places
* importsmerges

Model State Definition

Place
tokens: Integer

Interpretation rules (summarized)

run(Net) 
fire(Transition)

: while there is an enabled transition, fires it. 
: removes a token from each input Place 
and adds one to each output Place.

* 
transitions

p4

p5

t1

t2

t3

A

p3

p1

p2

Example of an Interpreted DSL

16/67



Abstract Syntax

input
1..*
output
1..*

Net

Place
name: String
initialTokens: Integer

Transition
name: String

places
* importsmerges

Model State Definition

Place
tokens: Integer

Interpretation rules (summarized)

run(Net) 
fire(Transition)

: while there is an enabled transition, fires it. 
: removes a token from each input Place 
and adds one to each output Place.

* 
transitions

p4

p5

t1

t2

t3

A

p3

p1

p2

p1

p3

p2

p4

p5

t1

t2

t3

p1

p3

p2

p4

p5

t1

t2

t3

p1

p3

p2

p4

p5

t1

t2

t3

fire(t1) fire(t2) fire(t3)

run(net)

B C D

1 2 3 4 5 6
A model 

state

step
foo()

1 observation 
point

Example of an Interpreted DSL

17/67



Abstract Syntax

input
1..*
output
1..*

Net

Place
name: String
initialTokens: Integer

Transition
name: String

places
* importsmerges

Model State Definition

Place
tokens: Integer

Interpretation rules (summarized)

run(Net) 
fire(Transition)

: while there is an enabled transition, fires it. 
: removes a token from each input Place 
and adds one to each output Place.

* 
transitions

p4

p5

t1

t2

t3

A

p3

p1

p2

p1

p3

p2

p4

p5

t1

t2

t3

p1

p3

p2

p4

p5

t1

t2

t3

p1

p3

p2

p4

p5

t1

t2

t3

fire(t1) fire(t2) fire(t3)

run(net)

B C D

1 2 3 4 5 6
A model 

state

step
foo()

1 observation 
point

Dynamic
Analysis

Example of an Interpreted DSL

18/67



Debugging/Tracing an interpreted model in the GEMOC Studio

19/67



Question
What about DSLs built with a compiler (eg. a code generator) instead of an interpreter?

20/67



Model

Procedure

dependency

conforms to

input/output

Model execution with a compiled DSL

21/67



Model

Procedure

dependency

conforms to

input/output

Compiled DSL

Model execution with a compiled DSL

22/67



Model

Procedure

dependency

conforms to

input/output

Compiled DSL

Source 
Abstract
Syntax 

Model execution with a compiled DSL

23/67



Model

Procedure

dependency

conforms to

input/output

Compiled DSL

Source 
Abstract
Syntax 

Compiler

Model execution with a compiled DSL

24/67



Model

Procedure

dependency

conforms to

input/output

Compiled DSL

Source 
Abstract
Syntax 

Compiler

Target Language 
(interpreted)

Target 
Abstract
Syntax 

Target 
Model State 

Definition 

Target 
Execution Steps 

Definition 

Interpretation 
Rules 

Target Engine

Ta
rg

et
 in

te
rp

re
te

r

Model execution with a compiled DSL

25/67



Model

Procedure

dependency

conforms to

input/output

Compiled DSL

Source 
Abstract
Syntax 

Compiler

Target Language 
(interpreted)

Target 
Abstract
Syntax 

Target 
Model State 

Definition 

Target 
Execution Steps 

Definition 

Interpretation 
Rules 

Target Engine

Ta
rg

et
 in

te
rp

re
te

r

Source 
Model 

Model execution with a compiled DSL

26/67



Model

Procedure

dependency

conforms to

input/output

Compiled DSL

Source 
Abstract
Syntax 

Compiler

Target Language 
(interpreted)

Target 
Abstract
Syntax 

Target 
Model State 

Definition 

Target 
Execution Steps 

Definition 

Interpretation 
Rules 

Target Engine

Ta
rg

et
 in

te
rp

re
te

r

Source 
Model 

Target 
Model 

Model execution with a compiled DSL

27/67



Model

Procedure

dependency

conforms to

input/output

Compiled DSL

Source 
Abstract
Syntax 

Compiler

Target Language 
(interpreted)

Target 
Abstract
Syntax 

Target 
Model State 

Definition 

Target 
Execution Steps 

Definition 

Interpretation 
Rules 

Target Engine

Ta
rg

et
 in

te
rp

re
te

r

Source 
Model 

Target 
Model 

Dynamic analysis
services

Target 
State Tracer

Debugger

Source 
Steps 
Target 
Steps 

...

Target 
runtime 

data

Model execution with a compiled DSL

28/67



Petri nets 
abstract 
syntax

AD abstract syntax

Activity

Edge

Action ForkNode JoinNodeInitialNode FinalNode

<<abstract>>
NamedElement

+name: String

source 
1
target 
1

outgoing 
*

incoming 
*

nodes 
*

edges 
*

<<abstract>>
Node

transformActivity(Activity) 
transformEdge(Edge) 
transformAction(Action) 
...

: Creates a Net 
: Creates a Place 
: Creates a Place and two Transitions

imports

Compiler (summarized)

imports

Example of a compiled DSL (1)

29/67



A

B

C

e1 e2
e3

e4

e5

e6

e7

Init End
JF

Source activity diagram

Example of a compiled DSL (2)

30/67



A

B

C

e1 e2
e3

e4

e5

e6

e7

Init End
JF

Source activity diagram

Init_node Init_offer A_node A_offere1_edge A_take F_nodeF_takee2_edge

e3_edge

e4_edge

F_offer

B_node

C_node

B_take

C_take

B_offer

C_offer

e5_edge

e6_edge

J_take J_node J_offer e7_edge End_take

Target Petri net obtained after compilation

Example of a compiled DSL (2)

30/67



Model

Procedure

dependency

conforms to

input/output

Compiled DSL

Source 
Abstract
Syntax 

Compiler

Target Language 
(interpreted)

Target 
Abstract
Syntax 

Target 
Model State 

Definition 

Target 
Execution Steps 

Definition 

Interpretation 
Rules 

Target Engine

Ta
rg

et
 in

te
rp

re
te

r

Source 
Model 

Target 
Model 

Dynamic analysis
services

Target 
State Tracer

Debugger

Source 
Steps 
Target 
Steps 

...

Target 
runtime 

data

Problem: Dynamic
analysis is performed

at the level of the
target domain!

Problem (1)

31/67



ie. when debugging activity diagrams, we must use a petri nets debugger:

Problem (2)

32/67



The case of programming languages

33/67



Most general-purpose programming languages rely on e�cient compilers for
their semantics, either targeting some form of bytecode (eg. Java or Python) or
machine code (eg. C or C++).

The case of programming languages

33/67



Most general-purpose programming languages rely on e�cient compilers for
their semantics, either targeting some form of bytecode (eg. Java or Python) or
machine code (eg. C or C++).
Most of these languages do provide an interactive debugger at the source
domain level to step through the execution and observe the program state.

The case of programming languages

33/67



Most general-purpose programming languages rely on e�cient compilers for
their semantics, either targeting some form of bytecode (eg. Java or Python) or
machine code (eg. C or C++).
Most of these languages do provide an interactive debugger at the source
domain level to step through the execution and observe the program state.
But these debuggers result from ad-hoc language engineering work! This does
not give us a systematic recipe for engineering new DSLs.

The case of programming languages

33/67



Most general-purpose programming languages rely on e�cient compilers for
their semantics, either targeting some form of bytecode (eg. Java or Python) or
machine code (eg. C or C++).
Most of these languages do provide an interactive debugger at the source
domain level to step through the execution and observe the program state.
But these debuggers result from ad-hoc language engineering work! This does
not give us a systematic recipe for engineering new DSLs.

How can we engineer compiled DSLs compatible with dynamic analyses at the
source domain level, just as common general-purpose programming languages?

The case of programming languages

33/67



Contribution
An architecture to support observation and control for compiled DSLs.

34/67



Runtime services 

Target LanguageSource Language

Source 
Abstract
Syntax 

Compiler

Source 
Model 

Target 
Abstract
Syntax 

Target 
Model State 

Definition 

Target 
Execution Steps 

Definition 

Interpretation 
Rules 

Target 
State Tracer

Debugger

Source 
Steps 
Target 
Steps 

...

Target Engine

Target 
runtime 

data

Source 
runtime  
data

Ta
rg

et
 in

te
rp

re
te

r

Model

Procedure

dependency

conforms to

input/output

Approach Overview

35/67



Runtime services 

Target LanguageSource Language

Source 
Abstract
Syntax 

Compiler

Source 
Model 

Target 
Abstract
Syntax 

Target 
Model State 

Definition 

Target 
Execution Steps 

Definition 

Interpretation 
Rules 

Target 
State Tracer

Debugger

Source 
Steps 
Target 
Steps 

...

Target Engine

Target 
runtime 

data

Source 
runtime  
data

Ta
rg

et
 in

te
rp

re
te

r

Model

Procedure

dependency

conforms to

input/output

Compilation Results

Compilation 
Links 

Target 
Model 

a

Approach Overview (1)

36/67



Runtime services 

Target LanguageSource Language

Source 
Abstract
Syntax 

Compiler

Source 
Model 

Target 
Abstract
Syntax 

Target 
Model State 

Definition 

Target 
Execution Steps 

Definition 

Interpretation 
Rules 

Target 
State Tracer

Debugger

Source 
Steps 
Target 
Steps 

...

Target Engine

Target 
runtime 

data

Source 
runtime  
data

Ta
rg

et
 in

te
rp

re
te

r

Model

Procedure

dependency

conforms to

input/output

Compilation Results

Compilation 
Links 

Target 
Model 

a

Source 
Model State 

Definition 

b

Approach Overview (2)

37/67



Step (b)− Source model state de�nition

38/67



Observing the execution of a model requires accessing its state as it changes
(tokens, variables, activated elements, etc.).

Step (b)− Source model state de�nition

38/67



Observing the execution of a model requires accessing its state as it changes
(tokens, variables, activated elements, etc.).
For interpreted DSLs, possible states are de�ned by a model state de�nition
which extends the abstract syntax of the DSL with new dynamic properties and
metaclasses (eg. tokens for the Petri nets DSL).

Step (b)− Source model state de�nition

38/67



Observing the execution of a model requires accessing its state as it changes
(tokens, variables, activated elements, etc.).
For interpreted DSLs, possible states are de�ned by a model state de�nition
which extends the abstract syntax of the DSL with new dynamic properties and
metaclasses (eg. tokens for the Petri nets DSL).
But for compiled DSLs, everything related to execution is delegated to the target
language, including the state de�nition.

Step (b)− Source model state de�nition

38/67



Observing the execution of a model requires accessing its state as it changes
(tokens, variables, activated elements, etc.).
For interpreted DSLs, possible states are de�ned by a model state de�nition
which extends the abstract syntax of the DSL with new dynamic properties and
metaclasses (eg. tokens for the Petri nets DSL).
But for compiled DSLs, everything related to execution is delegated to the target
language, including the state de�nition.
Hence, necessary to extend a compiled DSL with a model state de�nition, to
de�ne explicitly the possible states of conforming source models.

Step (b)− Source model state de�nition

38/67



When executing a UML activity diagram, tokens �ow through both nodes and
edges of the model.
We add a TokensHolder metaclass to re�ect that:

AD execution metamodel

Token

<<abstract>>
Node

Edge heldTokens 
*

merges
Activity diagram 
abstract syntax

<<abstract>>
TokenHolder

Example of model state de�nition for the AD DSL

39/67



Runtime services 

Target LanguageSource Language

Source 
Abstract
Syntax 

Compiler

Source 
Model 

Target 
Abstract
Syntax 

Target 
Model State 

Definition 

Target 
Execution Steps 

Definition 

Interpretation 
Rules 

Target 
State Tracer

Debugger

Source 
Steps 
Target 
Steps 

...

Target Engine

Target 
runtime 

data

Source 
runtime  
data

Ta
rg

et
 in

te
rp

re
te

r

Model

Procedure

dependency

conforms to

input/output

Compilation Results

Compilation 
Links 

Target 
Model 

a

Source 
Model State 

Definition 

b

Approach Overview (2)

40/67



Runtime services 

Target LanguageSource Language

Source 
Abstract
Syntax 

Compiler

Source 
Model 

Target 
Abstract
Syntax 

Target 
Model State 

Definition 

Target 
Execution Steps 

Definition 

Interpretation 
Rules 

Target 
State Tracer

Debugger

Source 
Steps 
Target 
Steps 

...

Target Engine

Target 
runtime 

data

Source 
runtime  
data

Ta
rg

et
 in

te
rp

re
te

r

Model

Procedure

dependency

conforms to

input/output

Compilation Results

Compilation 
Links 

Target 
Model 

a

Source 
Model State 

Definition 

b

Source 
Execution Steps 

Definition 

c

Approach Overview (3)

41/67



Step (c) − Source execution steps de�nition

42/67



Observing and controlling require
knowing the execution steps of the
model execution, ie. what are the
observable changes made to the state.

Step (c) − Source execution steps de�nition

42/67



Observing and controlling require
knowing the execution steps of the
model execution, ie. what are the
observable changes made to the state.
For interpreted DSLs, speci�c
interpretation rules can be tagged as
producers of execution steps (eg. the
fire step for Petri nets).

Step (c) − Source execution steps de�nition

42/67



Observing and controlling require
knowing the execution steps of the
model execution, ie. what are the
observable changes made to the state.
For interpreted DSLs, speci�c
interpretation rules can be tagged as
producers of execution steps (eg. the
fire step for Petri nets).
For compiled DSLs, we propose a
trivial step de�nition metamodel to
declare possible execution steps.

Step (c) − Source execution steps de�nition

42/67



Observing and controlling require
knowing the execution steps of the
model execution, ie. what are the
observable changes made to the state.
For interpreted DSLs, speci�c
interpretation rules can be tagged as
producers of execution steps (eg. the
fire step for Petri nets).
For compiled DSLs, we propose a
trivial step de�nition metamodel to
declare possible execution steps.

Step Definition Metamodel

StepDefinition
+name: String

Metamodeling language

parameters 
*

StepParameter
+name: String

type 
1

<<abstract>>
Classifier

+name: String

Step (c) − Source execution steps de�nition

42/67



Example of execution steps de�nition for the AD DSL

43/67



In UML activity diagrams, a node will take tokens from incoming edges, and o�er
tokens on its outgoing edges when it �nishes its task.

Example of execution steps de�nition for the AD DSL

43/67



In UML activity diagrams, a node will take tokens from incoming edges, and o�er
tokens on its outgoing edges when it �nishes its task.
We de�ne the following execution steps to re�ect that:

offer(Node): o�ering of tokens of a Node to the outgoing edges of the Node ;

take(Node): taking of tokens by a Node from the incoming edges of the Node
;
executeNode(Node): taking and o�ering of tokens by a Node , i.e., a
composite step containing both an offer step and a take step;
executeActivity(Activity): execution of the Activity until no tokens
can be o�ered or taken, i.e., a composite step containing executeNode steps.

Example of execution steps de�nition for the AD DSL

43/67



Runtime services 

Target LanguageSource Language

Source 
Abstract
Syntax 

Compiler

Source 
Model 

Target 
Abstract
Syntax 

Target 
Model State 

Definition 

Target 
Execution Steps 

Definition 

Interpretation 
Rules 

Target 
State Tracer

Debugger

Source 
Steps 
Target 
Steps 

...

Target Engine

Target 
runtime 

data

Source 
runtime  
data

Ta
rg

et
 in

te
rp

re
te

r

Model

Procedure

dependency

conforms to

input/output

Compilation Results

Compilation 
Links 

Target 
Model 

a

Source 
Model State 

Definition 

b

Source 
Execution Steps 

Definition 

c

Approach Overview (3)

44/67



Runtime services 

Target LanguageSource Language

Source 
Abstract
Syntax 

Compiler

Source 
Model 

Target 
Abstract
Syntax 

Target 
Model State 

Definition 

Target 
Execution Steps 

Definition 

Interpretation 
Rules 

Target 
State Tracer

Debugger

Source 
Steps 
Target 
Steps 

...

Target Engine

Target 
runtime 

data

Source 
runtime  
data

Ta
rg

et
 in

te
rp

re
te

r

Model

Procedure

dependency

conforms to

input/output

Compilation Results

Compilation 
Links 

Target 
Model 

a

Source 
Model State 

Definition 

b

Source 
Execution Steps 

Definition 

c

Feedback 
Manager 

d + Compilation Links

Source 
State 

Source 
Steps 
Source 
Steps 

Approach Overview (4)

45/67



Step (d) − Feedback manager de�nition

46/67



Now remains the translation at runtime of states and steps of the target model
back to the source model, to be observed by dynamic analysis tools.

Step (d) − Feedback manager de�nition

46/67



Now remains the translation at runtime of states and steps of the target model
back to the source model, to be observed by dynamic analysis tools.
Our approach: de�nition of a feedback manager attached to the execution, which
performs said translation on the �y during the model execution.

Step (d) − Feedback manager de�nition

46/67



Now remains the translation at runtime of states and steps of the target model
back to the source model, to be observed by dynamic analysis tools.
Our approach: de�nition of a feedback manager attached to the execution, which
performs said translation on the �y during the model execution.
Proposed interface for feedback managers:

feedbackState: Update the source model state based on the set of changes
applied on the target model state in the last target execution step.
processTargetStepStart: Translate a target starting step into source steps.
processTargetStepEnd: Translate a target ending step into source steps.

Step (d) − Feedback manager de�nition

46/67



Target Petri net execution trace (invisible to users and tools)

Source activity diagram execution trace (seen by users and tools)

Example of execution reconstructed by a feedback manager

47/67



Init_node

Init_offer A_take A_offer End_take

e1_edge A_node e2_edge

Target Petri net execution trace (invisible to users and tools)

Source activity diagram execution trace (seen by users and tools)

Example of execution reconstructed by a feedback manager

48/67



Init_node

Init_offer A_take A_offer End_take

e1_edge A_node e2_edge

Target Petri net execution trace (invisible to users and tools)

e1 e2

Init End

A

Source activity diagram execution trace (seen by users and tools)

Example of execution reconstructed by a feedback manager

49/67



Init_node

Init_offer A_take A_offer End_take

e1_edge A_node e2_edge

1

run(net)

Target Petri net execution trace (invisible to users and tools)

e1 e2

Init End

A

Source activity diagram execution trace (seen by users and tools)

Example of execution reconstructed by a feedback manager

50/67



Init_node

Init_offer A_take A_offer End_take

e1_edge A_node e2_edge

1

run(net)

Target Petri net execution trace (invisible to users and tools)

e1 e2

Init End

A

I

executeActivity(activity)

Source activity diagram execution trace (seen by users and tools)

Example of execution reconstructed by a feedback manager

51/67



Init_node

Init_offer A_take A_offer End_take

e1_edge A_node e2_edge

1

run(net)

2 3

fire(Init_offer)

Init_node

Init_offer A_take A_offer End_take

e1_edge A_node e2_edge

Target Petri net execution trace (invisible to users and tools)

e1 e2

Init End

A

I

executeActivity(activity)

Source activity diagram execution trace (seen by users and tools)

Example of execution reconstructed by a feedback manager

52/67



Init_node

Init_offer A_take A_offer End_take

e1_edge A_node e2_edge

1

run(net)

2 3

fire(Init_offer)

Init_node

Init_offer A_take A_offer End_take

e1_edge A_node e2_edge

Target Petri net execution trace (invisible to users and tools)

e1 e2

Init End

A

I

executeActivity(activity)

executeNode(Init)

II.1

Source activity diagram execution trace (seen by users and tools)

Example of execution reconstructed by a feedback manager

53/67



Init_node

Init_offer A_take A_offer End_take

e1_edge A_node e2_edge

1

run(net)

2 3

fire(Init_offer)

Init_node

Init_offer A_take A_offer End_take

e1_edge A_node e2_edge

Target Petri net execution trace (invisible to users and tools)

e1 e2

Init End

A

I

executeActivity(activity)

executeNode(Init)

II.1

e1 e2

Init End

A

III.1

offer(Init)

II.2

Source activity diagram execution trace (seen by users and tools)

Example of execution reconstructed by a feedback manager

54/67



Init_node

Init_offer A_take A_offer End_take

e1_edge A_node e2_edge

1

run(net)

2 3

fire(Init_offer)

Init_node

Init_offer A_take A_offer End_take

e1_edge A_node e2_edge

fire(A_take)

4

Init_node

Init_offer A_take A_offer End_take

e1_edge A_node e2_edge

Target Petri net execution trace (invisible to users and tools)

e1 e2

Init End

A

I

executeActivity(activity)

executeNode(Init)

II.1

e1 e2

Init End

A

III.1

offer(Init)

II.2

Source activity diagram execution trace (seen by users and tools)

Example of execution reconstructed by a feedback manager

55/67



Init_node

Init_offer A_take A_offer End_take

e1_edge A_node e2_edge

1

run(net)

2 3

fire(Init_offer)

Init_node

Init_offer A_take A_offer End_take

e1_edge A_node e2_edge

fire(A_take)

4

Init_node

Init_offer A_take A_offer End_take

e1_edge A_node e2_edge

Target Petri net execution trace (invisible to users and tools)

e1 e2

Init End

A

I

executeActivity(activity)

executeNode(Init)

II.1

e1 e2

Init End

A

III.1

offer(Init)

II.2

executeNode(A)

III.2

Source activity diagram execution trace (seen by users and tools)

Example of execution reconstructed by a feedback manager

56/67



Init_node

Init_offer A_take A_offer End_take

e1_edge A_node e2_edge

1

run(net)

2 3

fire(Init_offer)

Init_node

Init_offer A_take A_offer End_take

e1_edge A_node e2_edge

fire(A_take)

4

Init_node

Init_offer A_take A_offer End_take

e1_edge A_node e2_edge

Target Petri net execution trace (invisible to users and tools)

e1 e2

Init End

A

I

executeActivity(activity)

executeNode(Init)

II.1

e1 e2

Init End

A

III.1

offer(Init)

II.2

executeNode(A)

III.2

e1 e2

Init End

A

IVIII.3

take(A)

Source activity diagram execution trace (seen by users and tools)

Example of execution reconstructed by a feedback manager

57/67



Init_node

Init_offer A_take A_offer End_take

e1_edge A_node e2_edge

1

run(net)

2 3

fire(Init_offer)

Init_node

Init_offer A_take A_offer End_take

e1_edge A_node e2_edge

fire(A_take)

4

Init_node

Init_offer A_take A_offer End_take

e1_edge A_node e2_edge

fire(A_offer) fire(End_take)

5 6 7

Init_node

Init_offer A_take A_offer End_take

e1_edge A_node e2_edge Init_node

Init_offer A_take A_offer End_take

e1_edge A_node e2_edge

Target Petri net execution trace (invisible to users and tools)

e1 e2

Init End

A

I

executeActivity(activity)

executeNode(Init)

II.1

e1 e2

Init End

A

III.1

offer(Init)

II.2

executeNode(A)

III.2

e1 e2

Init End

A

IVIII.3

take(A)

V.3

e1 e2

Init End

A
e1 e2

Init End

A

VIIVI.2VI.1V.2

offer(A)

executeNode(End)

take(End)

V.1

Source activity diagram execution trace (seen by users and tools)

Example of execution reconstructed by a feedback manager

58/67



Runtime services 

Target LanguageSource Language

Source 
Abstract
Syntax 

Compiler

Source 
Model 

Target 
Abstract
Syntax 

Target 
Model State 

Definition 

Target 
Execution Steps 

Definition 

Interpretation 
Rules 

Target 
State Tracer

Debugger

Source 
Steps 
Target 
Steps 

...

Target Engine

Target 
runtime 

data

Source 
runtime  
data

Ta
rg

et
 in

te
rp

re
te

r

Model

Procedure

dependency

conforms to

input/output

Compilation Results

Compilation 
Links 

Target 
Model 

a

Source 
Model State 

Definition 

b

Source 
Execution Steps 

Definition 

c

Feedback 
Manager 

d + Compilation Links

Source 
State 

Source 
Steps 
Source 
Steps 

Approach Overview (4)

59/67



Runtime services 

Target LanguageSource Language

Source 
Abstract
Syntax 

Compiler

Source 
Model 

Target 
Abstract
Syntax 

Target 
Model State 

Definition 

Target 
Execution Steps 

Definition 

Interpretation 
Rules 

Target 
State Tracer

Debugger

Source 
Steps 
Target 
Steps 

...

Target Engine

Target 
runtime 

data

Source 
runtime  
data

Ta
rg

et
 in

te
rp

re
te

r

Model

Procedure

dependency

conforms to

input/output

Compilation Results

Compilation 
Links 

Target 
Model 

a

Source 
Model State 

Definition 

b

Source 
Execution Steps 

Definition 

c

Feedback 
Manager 

d + Compilation Links

Source 
State 

Source 
Steps 
Source 
Steps 

Feedback Engine
e

Approach Overview (5)

60/67



Evaluation
Can we observe and control compiled models?

In reasonable time?

61/67



Common parts (eg. glue code, APIs,
integration layer) of the approach
implemented for the GEMOC Studio, an
Eclipse-based language workbench.
The source code (Eclipse plugins written in
Xtend and Java) is available on Github:

Note
As he GEMOC Studio originally focused on interpreted DSLs, this is the �rst
attempt to support compiled DSLs in the GEMOC Studio.

https://github.com/tetrabox/gemoc-
compilation-engine

Implementation

62/67

https://github.com/tetrabox/gemoc-compilation-engine


Evaluation: RQs

63/67



RQ#1
Given an interpreted DSL and a compiled DSL with trace-equivalent semantics, does
the approach make it possible to observe the same traces with both DSLs?

Evaluation: RQs

63/67



RQ#1
Given an interpreted DSL and a compiled DSL with trace-equivalent semantics, does
the approach make it possible to observe the same traces with both DSLs?

RQ#2
Does the approach enable the use of runtime services at the domain-level of
compiled DSLs?

Evaluation: RQs

63/67



RQ#1
Given an interpreted DSL and a compiled DSL with trace-equivalent semantics, does
the approach make it possible to observe the same traces with both DSLs?

RQ#2
Does the approach enable the use of runtime services at the domain-level of
compiled DSLs?

RQ#3
What is the time overhead when executing compiled models with feedback
management?

Evaluation: RQs

63/67



Evaluation: Setup

64/67



Considered DSLs − 2 UML-based languages
a subset of fUML activity diagrams, using Petri nets as a target language,
a subset of UML state machines using a subset of Java as a target language.

Each DSL implemented twice: one interpreted variant and one compiled variant.

Evaluation: Setup

64/67



Considered DSLs − 2 UML-based languages
a subset of fUML activity diagrams, using Petri nets as a target language,
a subset of UML state machines using a subset of Java as a target language.

Each DSL implemented twice: one interpreted variant and one compiled variant.

Considered Runtime Services − 2 tools from our previous work
a trace constructor (ECMFA 2015, SoSym 2017)
an omniscient debugger (SLE 2015, JSS 2018)

Evaluation: Setup

64/67



Considered DSLs − 2 UML-based languages
a subset of fUML activity diagrams, using Petri nets as a target language,
a subset of UML state machines using a subset of Java as a target language.

Each DSL implemented twice: one interpreted variant and one compiled variant.

Considered Runtime Services − 2 tools from our previous work
a trace constructor (ECMFA 2015, SoSym 2017)
an omniscient debugger (SLE 2015, JSS 2018)

Considered Models − random generation
100 fUML activity diagrams in 10 groups ranging from 10 to 100 nodes,
30 UML state machines from 10 to 100 states, and 3 scenarios per state
machine.

Evaluation: Setup

64/67



Evaluation: Results

65/67



RQ#1: same traces between interpreted and compiled variants?
all 130 generated models executed with the interpreted and the compiled
variants of both executable DSLs
no di�erence found found when comparing traces

Evaluation: Results

65/67



RQ#1: same traces between interpreted and compiled variants?
all 130 generated models executed with the interpreted and the compiled
variants of both executable DSLs
no di�erence found found when comparing traces

RQ#2: working runtime services?
both runtime services (trace constructor and omniscient debugger) work as
expected at the domain-level

Evaluation: Results

65/67



RQ#1: same traces between interpreted and compiled variants?
all 130 generated models executed with the interpreted and the compiled
variants of both executable DSLs
no di�erence found found when comparing traces

RQ#2: working runtime services?
both runtime services (trace constructor and omniscient debugger) work as
expected at the domain-level

RQ#3: execution time overhead when using the feedback manager?
fUML activity diagrams → Petri nets: 1,6 times slower on average
UML State Machines → MiniJava: 1,01 times slower on average

Evaluation: Results

65/67



Summary
Observing and controlling the execution of compiled models is di�cult, and there
is a lack of systematic approach to design compiled DSLs with that goal in mind.
Our proposal: a generic language engineering architecture to de�ne explicit
feedback management in compiled DSLs

Perspectives (excerpt)
handling compilers de�ned as code generators;
provide an easier way to de�ne feedback managers;
managing stimuli sent to the source model during the execution;
measuring the amount of e�ort required to de�ne a feedback manager as
compared to de�ning an interpreter.

Conclusion

66/67



Thank you!
Github: 

Twitter: 

Email: 

https://github.com/tetrabox/gemoc-compilation-engine

@erwan_bousse

erwan.bousse@ls2n.fr

67/67

https://github.com/tetrabox/gemoc-compilation-engine
https://github.com/tetrabox/gemoc-compilation-engine
mailto:erwan.bousse@ls2n.fr

