Domain-Level Observation and Control for Compiled
Fxecutable DSLs

MODELS 2019 Foundations Track - Minich, Germany

Frwan Bousse Manuel Wimmer

University of Nantes — LS2N, France CDL-MINT, Jonhannes Kepler University Linz, Austria

Dynami

¢ Analysis of Behavioral Models

m Behavioral models (eg. state machines) can

COnr

veniently describe the behaviors of

systems under design.

= Domain-specific languages (DSLs) can be
engineered and used to build such models.

® Dynamic analyses of behavioral models are
crucial in early design phases to see how a
described behavior unfolds over time.

Requir

e the possibility to execute models !

Behavioral
model

Dynami

¢ Analysis of Behavioral Models

m Behavioral models (eg. state machines) can

COnr

veniently describe the behaviors of

systems under design.

= Domain-specific languages (DSLs) can be
engineered and used to build such models.

® Dynamic analyses of behavioral models are
crucial in early design phases to see how a
described behavior unfolds over time.

Requir

e the possibility to execute models !

Behavioral
model

Dynamic Analysis of Behavioral Models

m Behavioral models (eg. state machines) can
conveniently describe the behaviors of
systems under design.

= Domain-specific languages (DSLs) can be
engineered and used to build such models.

® Dynamic analyses of behavioral models are
crucial in early design phases to see how a
described behavior unfolds over time.

Require the possibility to execute moaels @&

1 conforms
(0]
1

|
Behavioral
model

Dynamic R

Analysis

Dynamic Analysis of Behavioral Models

m Behavioral models (eg. state machines) can
conveniently describe the behaviors of
systems under design.

= Domain-specific languages (DSLs) can be
engineered and used to build such models.

® Dynamic analyses of behavioral models are
crucial in early design phases to see how a
described behavior unfolds over time.

Require the possibility to execute moaels @&

1 conforms
(0]
1

|
Behavioral
model

+

Dynamic R

Analysis

Model
Execution

Model execution with an interpreted DSL

Model execution with an interpreted DSL

Model execution with an interpreted DSL

Interpreted DSL

Abstract
Syntax
(metamodel)

Model execution with an interpreted DSL

Interpreted DSL

Abstract
Syntax
(metamodel)

o

Model State
Definition

Model execution with an interpreted DSL

Interpreted DSL

Abstract
Syntax
(metamodel)

o

Model State
Definition

i

Execution Steps
Definition

I\

Interpretation

- - > dependency

Model

- =3 conforms to

% input/output <Procedur>

Model execution with an interpreted DSL

Interpreted DSL

Abstract
Syntax
(metamodel)

o

Model State
Definition

i

Execution Steps
Definition

T
Target interpreter

I\

Interpretation

- - > dependency

Model

- =3 conforms to

% input/output <Procedur>

Model execution with an interpreted DSL

Executed
Model

- - > dependency

Model

- =3 conforms to

% input/output <Procedur>

Interpreted DSL

Abstract
Syntax
(metamodel)

o

Model State
Definition

i

Execution Steps
Definition

I\

Interpretation

RS

Target interpreter

Model execution with an interpreted DSL

Executed

Interpreted DSL

Abstract
Syntax
(metamodel)

o

Model State
Definition

i

runtime

- - > dependency
Model

- =3 conforms to

% input/output <Procedur>

Execution Steps
Definition

T
Target interpreter

Model execution with an interpreted DSL

Dynamic analysis
services

- - > dependency

- =3 conforms to

Executed

Interpreted DSL

Abstract
Syntax
(metamodel)

o

Model State
Definition

i

Model

% input/output <Procedur>

Execution Steps
Definition

T
Target interpreter

Example of an Interpreted DSL

Abstract Syntax|

m * Model State Definition'
places ‘.‘ transitions |
* E— merges Place Imports | run(Net) : while there is an enabled transition, fires it.

<— — — < — fire(Transition) : removes a token from each input Place
tokens: Integer and adds one to each output Place.

Place <input Transition

*
name: String &jt'put name: String

initialTokens: Integer 1..*%*

Interpretation rules (summarized)

Example of an Interpreted DSL

Abstract Syntax|

m * Model State Definition'
places ‘.‘ transitions |
* E— merges Place Imports | run(Net) : while there is an enabled transition, fires it.

<— — — < — fire(Transition) : removes a token from each input Place
tokens: Integer and adds one to each output Place.

Place <input Transition

*
name: String &jt'put name: String

initialTokens: Integer 1..*%*

Interpretation rules (summarized)

Example of an Interpreted DSL

Abstract Syntax|

Place

<

m * Model State Definition'
places ‘.‘ transitions
* E— merges Place run(Net) : while there is an enabled transition, fires it.

<— — — fire(Transition) : removes a token from each input Place
tokens: Integer and adds one to each output Place.

input Transition

name: String
initialTokens:

Integer

1 *

output |[name: String

Interpretation rules (summarized)

1..%

run(net)

fire(tl) fire(t2) fire(t3)

observation
point

Example of an Interpreted DSL

Abstract Syntax|

Place

<

m * Model State Definition'
places ‘.‘ transitions
* E— merges Place run(Net) : while there is an enabled transition, fires it.

<— — — fire(Transition) : removes a token from each input Place
tokens: Integer and adds one to each output Place.

input Transition

name: String
initialTokens:

Integer

1 *

output |[name: String

Interpretation rules (summarized)

1..%

run(net)

fire(tl) fire(t2) fire(t3)

observation
point

Dynamic
Analysis

Debugging/Tracing an interpreted model in the GEMOC Studio

& o 1 (=)= Variables &3

Petrinet net? [Gemoc XMOF eXecutable Model]
+ 2 Gemoc debug target @ tokens (pl :Place)
+ ,® Model debugging @ tokens (p2 :Place)
= (TransitionConfiguration) net2.t1 -> fire() @ tokens (p3 :Place)
= (NetConfiguration) net -= run() @ tokens (p4 :Place)

— Global context : Net . —

@ *petrinet net2 & n Gemoc Engines Status E3 b

o

. : : net2.petrinet @
o8 - B v d h T S 3 pe

Question

What about DSLs built with a compiler (eg. a code generator) instead of an interpreter?

20/67

Model execution with a compiled DSL

Model execution with a compiled DSL

Model execution with a compiled DSL

Compiled DSL

Source
Abstract

- == dependency

Model

- =3 conforms to

= input/output

Model execution with a compiled DSL

Compiled DSL

Compiler

vV
Source
Abstract

- == dependency
Model

- =3 conforms to

= input/output

Model execution with a compiled DSL

Target Language
Compiled DSL (interpreted)

Compiler

' :
Source Target
Abstract Abstract
Syntax
[

Target
Model State
Definition

A

Target
Execution Steps
Definition

Interpretatlon
Rules
_J
- =-» conforms to

= input/output @rget Engine

RS
Target interpreter

- == dependency
Model

Model execution with a compiled DSL

Target Language
Compiled DSL (interpreted)

Compiler

' :
Source Target
Abstract ; Abstract
Syntax
[

Target
Model State
Definition

A

Target
Execution Steps
Definition

Interpretatlon
Rules
_J
- =-» conforms to

= input/output @rget Engine

RS
Target interpreter

- == dependency
Model

Model execution with a compiled DSL

Target Language
Compiled DSL (interpreted)

Compiler

' :
Source Target
Abstract ; Abstract

Syntax
[

Target
Model State
Definition

A

Target
Execution Steps
Definition

Interpretatlon
Rules
_J
- =-» conforms to

= input/output @rget Engine

RS
Target interpreter

- == dependency
Model

Model execution with a compiled DSL

Target Language
Compiled DSL (interpreted)

Compiler

v .
Source Target
Abstract ; Abstract

5 Syntax

. . : [
Dynamic analysis : . :

services

Target
Model State
Definition

A

Target
Execution Steps
Definition

Interpretatlon
Rules
_J
- =-» conforms to

= input/output @rget Engine

RS
Target interpreter

runtime :

- == dependency
Model

Fxample of a compiled DSL (1

AD abstract syntax

<<abstract>>
NamedElement nodes

+name: String <<abstract>>

Activity

Node source outgoing Edge

1 *

DT
target incoming
I—IJI—ll;I

InitialNode Action ForkNode JoinNode FinalNode

/\

| Imports

Petri nets transformActivity(Activity) . Creates a Net
abstract < - — - transformEdge(Edge) : Creates a Place
syntax imports | transformAction(Action) : Creates a Place and two Transitions

Compiler (summarized)

Fxample of a compiled DSL (2)

Source activity diagram

Fxample of a compiled DSL (2)

0 ()

INit

10—

_edge C take C _node C offer e6 _edge

Target Petri net obtalned after compilation

Target Language
Compiled DSL (interpreted)

Compiler

'
Source Target
Abstract Abstract

; Syntax

Dynamic analysis : _ /:\

services

Target
Model State
Definition

A

Target
Execution Steps

analysis is performed runﬂme; 71 pefinition
at the level of the ' n

target domain! Interpretat|o>

_J

RS
Target interpreter

Rules

- == dependency

- =-» conforms to
= input/output @rget Engl €

Problem (2

le. when debugging activity diagrams, we must use a petri nets debugger:

S . | ﬂ;ﬁvﬁr%vﬁﬁﬂ;'v

i £ xDSML | 35 Debug

& - 4 B - Variables &3

v Petrinet net2 [Gemoc XMOF eXecutable Model]
* 2 Gemoc debug target @ tokens (pl :Place)
v # Model debugging @ tokens (p2 :Place)
= (TransitionConfiguration) net2.tl -> fire() @ tokens (p3 :Place)
= (NetConfiguration) netZ -= run() @ tokens (p4 :Place)

— Global context : Net e e Y

L
L ___

@ *petrinet net2 &3 = ® Gemoc Engines Status &3 & 9 = O

_m m i - - #
|:||:| . ; :""- ‘“E-\Ef__.- e e e #) = ﬂ

net2.petrinet @
O

The case of programming languages

The case of programming languages

m Most general-purpose programming languages rely on efficient compilers for
their semantics, either targeting some form of bytecode (eg. Java or Python) or
machine code (eg. C or C++).

The case of programming languages

m Most general-purpose programming languages rely on efficient compilers for
their semantics, either targeting some form of bytecode (eg. Java or Python) or
machine code (eg. C or C++).

m Most of these languages do provide an interactive debugger at the source
domain level to step through the execution and observe the program state.

The case of programming languages

m Most general-purpose programming languages rely on efficient compilers for
their semantics, either targeting some form of bytecode (eg. Java or Python) or
machine code (eg. C or C++).

m Most of these languages do provide an interactive debugger at the source
domain level to step through the execution and observe the program state.

m But these debuggers result from ad-hoc language engineering work! This does
not give us a systematic recipe for engineering new DSLSs.

The case of programming languages

m Most general-purpose programming languages rely on efficient compilers for
their semantics, either targeting some form of bytecode (eg. Java or Python) or
machine code (eg. C or C++).

m Most of these languages do provide an interactive debugger at the source
domain level to step through the execution and observe the program state.

m But these debuggers result from ad-hoc language engineering work! This does
not give us a systematic recipe for engineering new DSLSs.

How can we engineer compiled DSLs compatible with dynamic analyses at the
source domain level, just as common general-purpose programming languages?

Contribution

An architecture to support observation and control for compiled DSLs.

34/67

Approach Overview

Source Language Target Language

Compiler

v .

Source Target
Abstract Abstract
Syntax Syntax

| X

Target
Model State
Definition

A

Target
Execution Steps
Definition

Interpretation
Rules
_J
- = conforms to

= input/output @rget Eng@

RS
Target interpreter

runtime
data

- - dependency
Model

Approach Overview (1

Source Language Target Language

Compiler

'

Source Combilation Target
Abstract < -im - P Abstract
Syntax Syntax

A

Target
Model State
Definition

A

Target
Execution Steps
Definition

Interpretation
Rules
_J
- = conforms to

= input/output @rget Eng@

RS
Target interpreter

runtime
data

- - dependency
Model

Approach Overview (2

Source Language Target Language

Compiler

'

Source Compilation Target
Abstract : << - - - Abstract
Syntax Syntax

A |] R

Source Target
Model State Model State
Definition Definition

A

Target
Execution Steps
Definition

Interpretation
Rules
_J
- = conforms to

= input/output @rget Eng@

RS
Target interpreter

runtime
data

- - dependency
Model

Step (b)- Source model state definition

Step (b)- Source model state definition

m Observing the execution of a model requires accessing its state as it changes
(tokens, variables, activated elements, etc.).

Step (b)- Source model state definition

m Observing the execution of a model requires accessing its state as it changes
(tokens, variables, activated elements, etc.).

m For interpreted DSLs, possible states are defined by a model state definition
which extends the abstract syntax of the DSL with new dynamic properties and

metaclasses (eg. tokens for the Petri nets DSL).

Step (b)- Source model state definition

m Observing the execution of a model requires accessing its state as it changes
(tokens, variables, activated elements, etc.).

m For interpreted DSLs, possible states are defined by a model state definition
which extends the abstract syntax of the DSL with new dynamic properties and

metaclasses (eg. tokens for the Petri nets DSL).

But for compiled DSLs, everything related to execution is delegated to the target
anguage, including the state definition.

Step (b)- Source model state definition

m Opbserving the executior
(tokens, variables, activa

of a model requires accessing its state as it changes

ed elements, etc.).

m For interpreted DSLs, possible states are defined by a model state definition
which extends the abstract syntax of the DSL with new dynamic properties and

metaclasses (eg. tokens

for the Petri nets DSL).

But for compiled DSLs, everything related to execution is delegated to the target
anguage, including the state definition.

® Hence, necessary to extend a compiled DSL with a model state definition, to
define explicitly the possible states of conforming source models.

Example of model state definition for the AD DSL

m \When executing a UML activity diagram, tokens flow through both nodes and
edges of the model.

m \\Ve add a TokensHolder metaclass to reflect that:

AD execution metamodel

<<abstract>>

merges Node <<abstract>>
Activity diagram | __ _ TokenHolder @—>

abstract syntax heldTokens
Edge :

Approach Overview (2

Source Language Target Language

Compiler

'

Source Compilation Target
Abstract : << - - - Abstract
Syntax Syntax

A |] R

Source Target
Model State Model State
Definition Definition

A

Target
Execution Steps
Definition

Interpretation
Rules
_J
- = conforms to

= input/output @rget Eng@

RS
Target interpreter

runtime
data

- - dependency
Model

Approach Overview (3

Source Language Target Language

Compiler

'

Source Combilation Target
Abstract < -im - P Abstract
Syntax Syntax

Source Target

Model State | --=» Model State
Definition Definition

Source Target
Execution Steps | | o -- > Execution Steps
Definition Definition

RS
Target interpreter

runtime
data

- - dependency
Model

Interpretation
Rules
_J
- = conforms to

= input/output @rget Eng@

Step (c) - Source execution steps definition

Step (c) - Source execution steps definition

m Opbserving and controlling require
knowing the execution steps of the
model execution, ie. what are the
observable changes made to the state.

Step (c) - Source execution steps definition

m Opbserving and controlling require
knowing the execution steps of the
model execution, ie. what are the
observable changes made to the state.

m For interpreted DSLs, specific
interpretation rules can be tagged as
producers of execution steps (eg. the

fire step for Petri nets).

Step (c) - Source execution steps definition

m Opbserving and controlling require
knowing the execution steps of the
model execution, ie. what are the
observable changes made to the state.

m For interpreted DSLs, specific
interpretation rules can be tagged as
producers of execution steps (eg. the

fire step for Petri nets).

m For compiled DSLs, we propose a
trivial step definition metamodel to
declare possible execution steps.

Step (c) - Source execution steps definition

= Opserving and controlling require Step Definition Metamodel
knowing the execution steps of the StepDefinition
model execution, ie. what are the +name: String
observable changes made to the state. paraneters

. - Vv
-or interpreted DSLs, specific StepParameter
interpretation rules can be tagged as name: String

producers of execution steps (eg. the

fire step for Petri nets). Metamodeling | language

_ . type
-or compiled DSLs, we propose a Vo1

trivial step definition metamodel to <<abstract>>
. . Classifier
eclare possible execution steps.

+name: String

Fxample of execution steps definition for the AD DSL

Fxample of execution steps definition for the AD DSL

m |n UML activity diagrams, a node will take tokens from incoming edges, and offer
tokens on its outgoing edges when it finishes its task.

Fxample of execution steps definition for the AD DSL

m |n UML activity diagrams, a node will take tokens from incoming edges, and offer
tokens on its outgoing edges when it finishes its task.

= \Ve define the following execution steps to reflect that:

o offer(Node): offering of tokens of a Node to the outgoing edges of the Node ;
> take(Node): taking of tokens by a Node from the incoming edges of the Node

o executeNode(Node): taking and offering of tokens by a Node, /.e, a
composite step containing both an of fer step and a take step;

o executeActivity(Activity): execution of the Activity until no tokens
can be offered or taken, /.e.,, a composite step containing executeNode steps.

Approach Overview (3

Source Language Target Language

Compiler

'

Source Combilation Target
Abstract < -im - P Abstract
Syntax Syntax

Source Target

Model State | --=» Model State
Definition Definition

Source Target
Execution Steps | | o -- > Execution Steps
Definition Definition

RS
Target interpreter

runtime
data

- - dependency
Model

Interpretation
Rules
_J
- = conforms to

= input/output @rget Eng@

Approach Overview (4

Source Language

Compiler

'

Source
Abstract
Syntax

o

Source

Model State
Definition

0o '

Source
Execution Steps
Definition

Manager

A
aFeedbaCk

<--E---

Compilation

P+ Compilation Links

- == dependency

- =¥ conforms to

% input/output

Target Language

Target
Abstract
Syntax

A

Target
Model State
Definition

A

Target
Execution Steps
Definition

Model

Interpretation
Rules
i,
érget Engi@

~

Target interpreter

Step (d) - Feedback manager definition

Step (d) - Feedback manager definition

Now remains the translation at runtime of states and steps of the target model
Dack to the source model, to be observed by dynamic analysis tools.

Step (d) - Feedback manager definition

Now remains the translation at runtime of states and steps of the target model
Dack to the source model, to be observed by dynamic analysis tools.

m Our approach: definition of a feedback manager attached to the execution, which
performs said translation on the fly during the model execution.

Step (d) - Feedback manager definition

Now remains the translation at runtime of states and steps of the target model
Dack to the source model, to be observed by dynamic analysis tools.

m Our approach: definition of a feedback manager attached to the execution, which
performs said translation on the tly during the model execution.

Proposed interface for feedback managers:

> feedbackState: Update the source model state based on the set of changes
applied on the target model state in the last target execution step.

o processTargetStepStart: Translate a target starting step into source steps.

o processTargetStepEnd: Translate a target ending step into source steps.

Fxample of execution reconstructed by a feedback manager

Target Petri net execution trace (invisible to users and tools)

Source activity diagram execution trace (seen by users and tools)

Fxample of execution reconstructed by a feedback manager

Target Petri net execution trace (invisible to users and tools)

Source activity diagram execution trace (seen by users and tools)

Fxample of execution reconstructed by a feedback manager

Source activity diagram execution trace (seen by users and tools)

Fxample of execution reconstructed by a feedback manager

run(net)

e

I

Source activity diagram execution trace (seen by users and tools)

Fxample of execution reconstructed by a feedback manager

run(net)

O e

I

Target Petri net execution trace (invisible to users and tools)

N

executeActivity(activity)

Source activity diagram execution trace (seen by users and tools)

Fxample of execution reconstructed by a feedback manager

fire(Init_offer) \

Target Petri net execution trace (invisible to users and tools)

N

executeActivity(activity)

Source activity diagram execution trace (seen by users and tools)

Fxample of execution reconstructed by a feedback manager

fire(Init_offer) \

Target Petri net execution trace (invisible to users and tools)

N

executeActivity(activity)

Source activity diagram execution trace (seen by users and tools)

Fxample of execution reconstructed by a feedback manager

fire(Init_offer) \

Target Petri net execution trace (invisible to users and tools)

N

executeActivity(activity)

Source activity diagram execution trace (seen by users and tools)

Fxample of execution reconstructed by a feedback manager

fire(Init_offer) fire(A_take) \

Target Petri net execution trace (invisible to users and tools)

N

executeActivity(activity)

Source activity diagram execution trace (seen by users and tools)

Fxample of execution reconstructed by a feedback manager

fire(Init_offer) fire(A_take) \

Target Petri net execution trace (invisible to users and tools)

executeActivity(activity)

executeNode (A) \

Source activity diagram execution trace (seen by users and tools)

Fxample of execution reconstructed by a feedback manager

fire(Init_offer) fire(A_take) \

Target Petri net execution trace (invisible to users and tools)

executeActivity(activity)

executeNode (A) \

Source activity diagram execution trace (seen by users and tools)

Fxample of execution reconstructed by a feedback manager

run(net)

O

fire(Init_offer) fire(A_take) fire(A_offer) fire(End_take)

Target Petri net execution trace (invisible to users and tools)

executeActivity(activity)

Source activity diagram execution trace (seen by users and tools)

Approach Overview (4

Source Language

Compiler

'

Source
Abstract
Syntax

o

Source

Model State
Definition

0o '

Source
Execution Steps
Definition

Manager

A
aFeedbaCk

<--E---

Compilation

P+ Compilation Links

- == dependency

- =¥ conforms to

% input/output

Target Language

Target
Abstract
Syntax

A

Target
Model State
Definition

A

Target
Execution Steps
Definition

Model

Interpretation
Rules
i,
érget Engi@

~

Target interpreter

Approach Overview (5

Source Language

Compiler

'

Source
Abstract
Syntax

o

Source
Model State
Definition

0o '

Source
Execution Steps
Definition

aFeedback

Manager

%edback Eng@

P+ Compilation Links

: runtime

- == dependency

- =¥ conforms to

=3 input/output

Target Language

Target
Abstract
Syntax

A

Target
Model State
Definition

A

Target
Execution Steps
Definition

runtime

Model

Procedure

Interpretation
Rules
i,
érget Engi@

~

Target interpreter

Evaluation

Can we observe and control compiled models?

N reasonable time?

61/67

Implementation

m Common parts (eg. glue code, APIs,
integration layer) of the approach - ecllpse

implemented for the GEMOC Studio, an G m.
—Clipse-based language workbench. e

m [he source code (Eclipse plugins written in StUd 1O
Xtend and Java) is available on Github:

https://github.com/tetrabox/gemaoc-
compilation-engine

Note

As he GEMOC Studio originally focused on interpreted DSLs, this is the first
attempt to support compiled DSLs in the GEMOC Studio.

https://github.com/tetrabox/gemoc-compilation-engine

Fvaluation: RQs

Fvaluation: RQs

RQ#1

Given an interpreted DSL and a compiled

DSL with trace-equivalent se

the approach make it possible to observe the same traces with both

Mmantics, does

JSLS?

Fvaluation: RQs

RQ#1

Given an interpretec

DSL and a compiled

DSL with trace-equivalent se

the approach make it possible to observe the same traces with both

RQ#2

compiled DSLs?

Mmantics, does

JSLS?

Does the approach enable the use of runtime services at the domain-level of

Fvaluation: RQs

RQ#1

Given an interpreted DSL and a compiled DSL with trace-equivalent semantics, does
the approach make it possible to observe the same traces with both DSLS?

RQ#2

Does the approach enable the use of runtime services at the domain-level of
compiled DSLs?

RQ#3

What is the time overhead when executing compiled models with feedback
management?

Fvaluation: Setup

Fvaluation: Setup

Considered DSLs - 2 UML-based languages

m g subset of fUML activity diagrams, using Petri nets as a target language,
m 3 subset of UML state machines using a subset of Java as a target language.

Each DSL implemented twice: one interpreted variant and one compiled variant.

Fvaluation: Setup

Considered DSLs - 2 UML-based languages

m g subset of fUML activity diagrams, using Petri nets as a target language,
m 3 subset of UML state machines using a subset of Java as a target language.

Each DSL implemented twice: one interpreted variant and one compiled variant.

Considered Runtime Services - 2 tools from our previous work

m 3 trace constructor (ECMFA 2015, SoSym 201 7/)
® an omniscient debugger (SLE 2015, JSS 2018)

Fvaluation: Setup

Considered DSLs - 2 UML-based languages

m g subset of fUML activity diagrams, using Petri nets as a target language,
m 3 subset of UML state machines using a subset of Java as a target language.

Each DSL implemented twice: one interpreted variant and one compiled variant.

Considered Runtime Services - 2 tools from our previous work

m 3 trace constructor (

-CM

“A 2015, SoSym 2017)

® an omniscient debugger (SLE 2015, JSS 2018)
Considered Models - random generation

m 100 fUML activity diagrams in 10 groups ranging from 10 to 100 nodes,
m 30 UML state machines from 10 to 100 states, and 3 scenarios per state

machine.

Fvaluation: Results

Fvaluation: Results

RQ#1: same traces between interpreted and compiled variants?

m 3|l 130 generated models executed with the interpreted and the compiled
variants of both executable DSLS

m no difference found found when comparing traces

Fvaluation: Results

RQ#1: same traces between interpreted and compiled variants?

m 3|l 130 generated models executed with the interpreted and the compiled
variants of both executable DSLS

m no difference found found when comparing traces

RQ#2: working runtime services?

m poth runtime services (trace constructor and omniscient debugger) work as
expected at the domain-level

Fvaluation: Results

RQ#1: same traces between interpreted and compiled variants?

m 3|l 130 generated models executed with the interpreted and the compiled
variants of both executable DSLS

m no difference found found when comparing traces

RQ#2: working runtime services?

m poth runtime services (trace constructor and omniscient debugger) work as
expected at the domain-level

RQ#3: execution time overhead when using the feedback manager?

m f{UML activity diagrams — Petri nets: 1,6 times slower on average
= JML State Machines — MinijJava: 1,01 times slower on average

Conclusion

Summary

m Opbserving and controlling the execution of compiled
s a lack of systematic approach to design compiled

models is ¢

ifficult, and there

DSLs with t

nat goal in mind.

m Our proposal: a generic language engineering architecture to define explicit

feedback management in compiled DSLs

Perspectives (excerpt)

® handling compilers defined as code generators;
m provide an easier way to define feedback managers;

"B managing stimuli sent to the source model during the execution;
B measuring the amount of effort required to define a feedback manager as

compared to defining an interpreter.

Thank you!

Github: https://github.com/tetrabox/gemoc-compilation-engine

Twitter: @erwan bousse

-mail: erwan.bousse@|s2n.fr

67/67

https://github.com/tetrabox/gemoc-compilation-engine
https://github.com/tetrabox/gemoc-compilation-engine
mailto:erwan.bousse@ls2n.fr

